Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control.
نویسندگان
چکیده
Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour).
منابع مشابه
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.
Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anod...
متن کاملGeneral Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes.
Li-alloy-based anode materials are very promising for breaking current energy limits of lithium-ion battery technologies. Unfortunately, these materials still suffer from poor solid-electrolyte interphase (SEI) stability, resulting in unsatisfied electrochemical performances. The typical SEI formation method, electrochemical decomposition of electrolytes onto the active material surface, lacks ...
متن کاملNon-aqueous Electrolytes and Interfacial Chemistry in Lithium- ion Batteries
Xu, C. 2017. Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion Batteries. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1525. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9931-0. Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable...
متن کاملStabilizing lithium metal using ionic liquids for long-lived batteries
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase...
متن کاملMechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes.
Stability and high energy densities are essential qualities for emerging battery electrodes. Because of its high specific capacity, silicon has been considered a promising anode candidate. However, the several-fold volume changes during lithiation and delithiation leads to fractures and continuous formation of an unstable solid-electrolyte interphase (SEI) layer, resulting in rapid capacity dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2012